• Рус Русский
  • Eng English (UK)

Scientific and technical journal established by OSTU. Media registration number: ПИ № ФС77-75780 dated May 23, 2019. ISSN: 2220-4245. Subscription index in the online catalog «Subscription Press» (www.akc.ru): E28002. Subscription to the electronic version is available on the «Rucont» platform.
The journal is included in the Russian Science Citation Index and in the List of Russian Scientific Journals .

Search results

  • V.4(44), 2020
    65-75

    Principles of classification of influencing factors on the energy consumption of electric rolling stock

    The known approaches to the classification of factors affecting the energy consumption of the train are considered, and their main disadvantages are identified. The validity of existing classification methods and the completeness of accounting for factors affecting energy consumption are evaluated. It is shown that none of the known approaches to classification gives a complete picture of all the influencing factors and the degree of their influence on the energy consumption of the train, since it does not fully take into account the physical nature of the individual components and the overall power consumption for traction. Based on the analysis of the energy balance of the train articulated principles and criteria for the classification of factors influencing energy consumption, considers the interconversion of different forms of energy and describe their energy diagrams in the different modes of the train movement. The analysis made it possible to identify the factors that affect the power consumption of the train in all modes of movement, and evaluate them according to various criteria. A classification of factors affecting the train's electricity consumption is proposed, which allows us to justify the correct method of accounting for each factor, develop measures to reduce the influence of individual factors on energy consumption, improve the system of analysis, rationing and forecasting of electricity consumption for train traction, and competently solve other problems of electric traction energy.
  • V.2(34), 2018
    65-75

    Study of operation modes of the electrical power supply system for installation of electric energy storage drivers

    The article deals with issues related to theoretical and experimental studies of operating modes of the traction power supply system. The analysis of the comparison of voltages on the tires of traction substations with uncontrolled rectifiers and tires of traction substations with converter units equipped with a system of non-contact automatic voltage regulation is shown, the differences between them are shown. The modes of operation of the active partitioning post with the point of increasing voltage have been studied in detail. As a result of research, it was found that the observation time of maximum voltage values at substation tires above the average no-load voltage level is about 5 -10% of the time of day, about 7 - 8% at active posts, and 10 - 13% at passive posts. The maximum power in the active mode of the post sectioning with the point of increasing the voltage at lower voltage in the contact network is 2.9 MW. The average amount of electricity returned to the contact network point of increase of voltage, in one case is 170 kWh. The average duration of work in active mode for one case is 8,6 minutes.
  • V.1(33), 2018
    79-87

    Electrical distribution networks of railway junctions. problems and solutions

    The article describes the current state of railway non-traction electric power supply system in the electric grid complex. The main drawbacks of the existing electricity metering system in 0.4-10 kV distribution networks are shown. The main directions of non-tractive electric grid complex innovative development are considered, including directed to increase the efficiency of electric energy transformation, transmission and consumption processes due to the management of distribution networks operating modes. The basic principles of "Digital district power supply" constructing are given.
  • V.3(19), 2014
    87-91

    Automated monitoring of energy efficiency operation of the electric rolling stock of jsc «russian railways»

    The presence of ever-changing electrical traction load, distributed not only in time but also in space leads to the complexity of the detailed monitoring of the energy efficiency of the organization trains JSC «Russian Railways». Therefore one of the priorities of the energy strategy of JSC «Russian Railways» is the introduction of innovative technical tools and technologies. The paper discusses the main provisions and some functionality created automated information-measuring complex accounting of electric energy in the electric rolling stock. Reviewed the processing of data for evaluation of energy efficiency of trains on the basis of the developed system.
  • V.1(41), 2020
    98-107

    Improvement of methodology for determination of electric power loses on train traction

    This article presents the rationale for the need to change the methodology for determining the absolute and relative values of energy losses to train traction. It is shown that when determining the relative value of the losses, it is necessary to take into account the amount of recovery energy returned to the contact network by electric rolling stock meters. To increase the accuracy of determining the absolute value of losses, it is necessary to take into account the energy consumption for the needs of the traction power supply system for prophylactic heating and smelting of ice on the wires of the contact network, as well as to ensure uninterrupted voltage on inactive electrified sections of railways. A formula is proposed for estimating the component of electric power losses in the contact network from the flow of energy recovery taking into account changes in the methodology for determining the loses of electric power for train traction.
  • V.4(32), 2017
    101-110

    The technology of electricity accounting on the rolling stock with the use of information-measuring complexes and technical requirements for such complexes

    The article analyzes the current state of electricity measuring on the electric rolling stock. The main shortcomings of the existing electric power measuring systems for train traction are shown. The technical requirements for information-measuring systems of electricity accounting on electric rolling stock are presented. The technology of electricity accounting on the rolling stock with the use of information-measuring complexes and the procedure for processing the measurement results are described. The minimum required list of fixing parameters during the trip is determined. The procedure for calculating the electric power consumption of electric rolling stock within the boundaries of an arbitrary electricity metering zone is given. The prospects of application of the proposed developments on the railway network are considered to provide monitoring of the transportation process energy efficiency.
  • V.3(35), 2018
    126-134

    On the question of determining the energyconsumption of electric heating units, not equipped with metering devices

    The article deals with the consumption of fuel and energy resources, including a significant proportion of these resources spent on the organization of electric heating (773.7 million kWh). It was noted that until recently in the reporting of JSC « Russian Railways » there were two different approaches in determining the actual volume of electric energy consumed by electric heating equipment, not equipped with individual metering devices based on the calculation-analytical and calculation-statistical methods. It was found that the results of calculations by both methods have a significant deviation between them (up to 100 %). The purpose of the study is to determine a unified approach that allows to accurately record the consumption of electric energy in these conditions. The characteristic features of each of the applied methods were analyzed, comparative studies on a number of objects of four Railways (October, Sverdlovsk, South Ural, East Siberian), characterized by different climatic characteristics were carried out. At the same time, studies were carried out on the applicability in practice for the regulation of fuel and energy resources of the automated system « Stationary energy » . According to the research results, the value of the deviation of the actual consumption of electric energy from the calculated for both applied methods is shown. A method for determining the actual consumption of electric energy for heating on the basis of a preliminary calculation of the allowable volume consumption of thermal energy with subsequent conversion into electrical energy is proposed and confirmed by tests. The results obtained were adopted when updating the « Methods of analysis and planning of electricity consumption for non-traction needs in JSC « Russian Railways » , approved by the order of JSC « Russian Railways » from 22.08.2018 № 1866p in terms of determining the resource requirements for heating. Based on the results, changes were made to the procedure for filling in the data in the corporate management reporting of EO-10U.
  • V.1(41), 2020
    133-140

    On forecasting demand for electric power with application of artificial neural networks by energy systems of the regions of the russian federation

    The calculation of the forecast demand for electric energy by energy systems and complexes of the constituent entities of the Russian Federation is an urgent task. The use of deterministic methods for objects of a similar scale is practically excluded due to the absence or significant incompleteness of the source data. Statistical data available in official sources in an unchanged format is usually presented for a period of 3 - 5 years, which is insufficient for the use of artificial neural networks. The article attempts to study the properties of similar energy systems and complexes. Modern power systems and complexes belong to closed subsystems, the set of elements and connections of which is equivalent to the set of elements of local subsystems of a higher level energy system. This means the inadmissibility of drawing up predictive rules of functioning without taking into account heterogeneous external influences. The system and subsystems are presented as a "black box". Interactions between the system and the external environment and within the system are carried out by the transmission of signals, which are described by a finite set of factors available for analysis and forecasting. The analysis of the possibility of supplementing the general population with statistical data on other objects with a similar structure is carried out. The property of heteromorphism of energy systems and complexes is confirmed. The example of energy systems in the regions of the Russian Federation shows the possibility of a similar approach if non-collinear groups of factors are applied to the analysis. The results of 15 calculations of the most energy-intensive entities of the country are presented, in 28 % of cases the accuracy of forecasted power consumption accuracy is less than 5 %. A further increase in the accuracy of the forecast should develop in the direction of increasing the number of input factors, subject to the condition of the absence of their collinearity and multicollinearity. It is shown that energy systems and complexes of various scales can be described by non-Gaussian stable distributions with infinite dispersion of non-Gaussian distributions, which makes incorrect the use of such methods as the simple extrapolation method, as well as statistical methods based on the assumption that the random distribution law is normal.